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ABSTRACT

Fast, simple and effective registration methods are neagdadvide variety of computer-assisted
surgical procedures in which readily locatable anatomaramarks are not available. Orthopedic
procedures about the knee, in particular, are adversedgtafl if the registration accuracy exceeds
about 1 mm in translation or abot in rotation, and the proximal tibia and distal femur are typi
cally devoid of small distinct features. Surface-basedtleguares registration methods can be used,
but are susceptible to poor initial pose estimates and @ eontamination during intraoperative
data collection.

We have developed a fast, statistically robust method fidase-based registration. The method
is based on the iterative closest point (ICP) algorithm,féaé set of sparsely measured data points
to a planar facet model. An initial registration estimateliained by having the user contact the
anatomy in a set of general anatomical regions (rather tbatacting distinctive features). A small
number of additional data points are acquired to refine tgestration. Starting from the initial
estimate, a robust scored perturbation method is used tafimaitial registration. This is followed
by an M-estimate ICP registration which is taken as the fiegistration. Simulation results show
that this method is robust for data sets containing up to 2&%&sgoutliers.

The method has been tesieditro on plastic bone models, where it robustly outperformed the
least-squares estimate and maintained the required Znawo¢uracy. Theén vivo use of spotlights
in computer-enhanced osteotomies of the knee and wristdmf@med that the method is easy to
use and sulfficiently accurate.



1. Introduction

Registration of a patient to a medical image is often performed by findingdatrags-
formation that minimizes the squared residual error between the surgicad pomhpoints
on a model derived from a 3D medical image. One widely cited surface-bagexira-
tion method is the iterative-closest-point (ICP) method of Besl and MdRyfor this
local-search method, computation speed and registration accuracy are cementdew
an initial registration estimate is chosen. Two widely acknowledged prableith ICP-
like surface registration methods are (1) the need for a good initial estimad (2) that
minimizing the sum-of-squared residual error is optimal only when the measuat@&mors
have Gaussian distributions. If measurements are accidentally takérmiin the target
anatomy (e.g., if a foot pedal is accidentally hit or if the contact point is outside The C
scan region), then a least-squares error measure can produce poor results.

Here we present a fast, robust method for surface-based registration.elberabust
statistical methods provides reliability and accuracy in the presence l@rsutWe use a
method for finding an initial registration that is easy to use in practesgjiring only that
the the surgeon contact the anatomy in a set of general anatomical regions (rathat t
specific anatomical landmarks). The user interface presents the surgeanagitialization
of the target anatomy in which these restricted regions are individuallyilated, so the
process is terme8potlight registration. Figure 1 shows an example surface mesh of the
proximal tibia and four spotlight regions. The contact points, along with the spotlight
regions are used to compute the initial registration. The registration fefuréfined by
the use of a robust optimization procedure. The surgeon may then collect additional point
within the exposed anatomical region for further refinement. A perturbation tpohis
used to refine the initial estimate, and a robust M-estimator is thentassdatain the final
estimate of the registration. The method is fast and provides reliablésesul

Figure 1. A surface mesh of a phantom proximal tibia, derived from computed tomog-
raphy, and four spotlight regions for registration. The spheres mark the centers of the
spotlights.



2. Robust Surface-Based Registration

Rigid-body surface-based registration is the process of finding a transforrfratiom
set of measured points on the target anatomy to the model surface derived frowedical
image. LetP = {p;} be a set oh surface-data points measured from the target anatomy
by the surgeon, leX = {x;} be the set of all points on the surface model, and@’let)z =
R(§)z + t be arigid transformation of a poiat The registration goal is to find both the
rigid-body transformatiod” and some n-element subsétof model surface location&
to which the target anatomy locatiod project underI’. In the presence of errors the
anatomical pointg’> will not in general project exactly ontg. A least-squares solution to
the surface-based registration can be stated as the minimunm; aney” C X, of

By(r, V) = 3 llyi = T(pil? )

wherey; e Y. In the general case this is a hon-convex minimization problem with multiple
local minima.

Statisticians have long been aware of the need for robust methods of parastiatar e
tion [10, 15]. Robust methods have been applied widely in the computer vision community
for many estimation problems, including pose estimation [6, 11, 12] which is maithe
ically similar to the registration problem. Grimsehal. [5] performed point-to-surface
matching by progressively refining the registration using a series of olgecinctions.
Although it was not stated explicitly, their final objective function is the HJhét.

Many robust estimation techniques Udeestimation, in which theL, norm in (1) is
replaced with a robust norm to yield an objective function of the form

n

Fyu(r,Y) =) ply: — T(7)pi; o) (2

=1

where p(r; o) is the robust norm applied to the residualando is a scale parameter
that depends on the form of the expected error distribution. One robust estimatoashat
reportedly provides good performance on 3D range data [14] is the Tukey biweight:

Z(1-(1-2))7 ifz<ol
a?/2 otherwise

ples )= { @
We used ranked scores of perturbations of the least-squares estimatordeartipg initial
registration. We then used a robust M-estimator version of ICP to refineethstration
further. These estimators form the basis of a fast and accurate methodfémresbased
registration.

The main stages of our surface-based registration method are:
1. Spotlight data are gathered intraoperatively. The surgeon contacts points an the e

posed anatomical regions that correspond to the spotlights shown on a monitor, as in
Figure 1.

2. The initial contact points are first matched to the spotlaggntroids on the model
using a simple least-squares minimization method [9].

3. The initial contact points are then matched to the spotkgiface regions on the
model, using a least-squares ICP method.
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4. The surgeon then contacts another set of points on the relevant exposed anatomical
region. These locations should be chosen to cover the anatomy that will be involved
in the image-guided surgery, and should provide sufficient translational an@natati
constraints on the registration.

5. The initial registration, along with the full set of contact points, is themest. The
initial registration is repeatedly perturbed, and the least-squaretuatdor each
point is calculated. The perturbation with the largest number of residuals ¢hall ar
less than a user-supplied threshold is taken as the best initial registatimate.

6. Finally, the perturbation registration estimate is then refined futbieg a version
of the ICP algorithm that incorporates the robust Tukey-biweight M-estimator.

Each iteration of the ICP algorithm actually involves two estimati@ps. given a regis-
tration estimate, one needs to find the set of closest points on the surfacéremtiermed

data points. It is important that this search for the closest points be fast batmsusne of

the most computationally demanding steps of the algorithm. From these closest points on
the surface, one then needs to update the registration estimate.

2.1 Finding Nearest Neighbors on a Surface Model

Given a registration, the ICP method requires that one solve the nearest-nggiiipor
lem: For each poinp; and a modelX, the pointx; in X that is nearest t@; under the
transformation must be found. K is a triangulated surface mesh then the facet contain-
ing x; must be found so that; can be calculated. Exhaustive search over all facets is too
time-consuming for models containing tens of thousands of facets.

Although heuristics have been proposed for finding the facet containing the nearest
point [1, 13], one can in fact guarantee that a nearest neighbor is always found. For each
model facet, find the centroid and the largest centroid-to-vertex distaecerdrthe largest
centroid-to-vertex distance found over all facdts,and build the k-D tree using the facet
centroids. To find a nearest neighbor, first find the nearest centroid and compligtanse
r. Use the region search algorithm of [1] to find all facet centroids within grese of
radiusR + r centered on the data point. Finally, exhaustively search all returneis tace
find the true nearest neighbor.

In practice this algorithm can return a large number of facets, espesiadly the datum
p; is very far away from the model or if the model contains some unusually largesfacet
The requirement can be relaxed by limiting the number of returned facetsdedanumber
(to reduce computation time). Compared to exhaustive search, speedesareamre than
two orders of magnitude were observed for models containing tens of thousands of facets.

2.2 Refinement of Registration Using Perturbation

Even when started from a reasonable spotlight estimate, traditionald@Bimplistic
robust variants suffer from “trapping” by converging to a local non-global minimum of
the registration parameters. The usual robustness remedy is to perturddutiens at
the first, and possibly subsequent registration estimates [5, 7]. One tltensao use a
perturbation technique to conduct a local search through the possible registragekisgs
the registration that gives the best least-squares fit for the largest numpeintd. This
alternative can be accomplished heuristically by means of a simplehgaa@edure.



Our implementation sampled sixty-four points uniformly from a unit hemisphere to de-
fine sixty-four axes of rotation. The surgical data were rotated, about their metuabicl,
around each of these axes+H$ degrees and the Euclidean residual errors were calculated.
For each of the 128 rotations, if half of the transformed surgical data had resitiaal
were less than a provided threshold value (1 mm) then the rotation was notegerTine
bation that produced, for at least half the surgical data, the minimum maximuduaési
was deemed to be the perturbation that gave the best initial fit to the refineorgidal
data.

2.3 Robust Registration Estimation

A robust version of ICP was produced by modifying the process of updating the reg-
istration. This requires a solution to the absolute orientation problem, for wiach’s
method provides a common least-squares solution.

To obtain an M-estimate of absolute orientation, we use an iterativeiigated least-
squares modification [8, 6] of Horn’s method [9]. The scale parameeterEquation (3),
is estimated, following Rousseeuw [15], as a function of the parametbysusing the
median of absolute deviations of the residualér) = y; — T(7)p;:

o = 1.4826 median (||rz( )| — median{jr; (v )||> 4)

3. InVitro Experiments

One application of computer-enhanced orthopedic surgery is to the high tibial osteotomy
for which the surgical exposure is limited to the anterolateral aspect of txenpal tibia.
The only distinctive landmarks are the tibial tubercle (which is concealetidyatellar
tendon) and the fibular head (which is mobilized from the tibia by osteoclagis}light
registration was examined as an alternative to fiducial registratibicjws very accurate
but invasive.

As a standard comparison, we also considered the procedure of pedicle-scréarinse
into a lumber vertebra, for which the posterior aspect of the ends of the tramsusils
superior articular processes provide prominent landmarks.

3.1 Materials and Preparation

A plastic tibia and L4-vertebra (Sawbones, Vashon, WA) were instrumentadhvee
titanium-alloy anchor screws of 1.9 mm diameter (Wright Medical Devides) dcted as
fiducial markers. The phantoms were imaged by computed tomography, and decimated
isosurface models were produced. The tibial mesh contained 34,537 vertices and 68,564
triangular faces, and the vertebral mesh contained 27,096 vertices and 54,%)4Tiaee
fiducial locations in CT coordinates were found using a previously validated esfrteass
calculation [3] and the locations were verified with Roentgen stereogrémorapalysis.

The phantoms were fixed in frames and the fiducial markers were contactefdausi
six-degree-of-freedom mechanical pointer (FARO Technologies, Lake Ma)ypFibtain
a registration that bore a known error to ground truth [4]. For the tibial phantondwe
10 mmx 10 mm squares were drawn on the surface in the area of typical surgical exposure
and 100 data points were collected for each square, attempting to keep thespaiting
as uniform as possible. For the vertebral phantom, eight &&mm squares were drawn
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on the surface and data were collected as for the tibial phantom. Four spotlightsus r

10 mm were sampled with 100 data points each from the tibial phantom, and Birfolar

the vertebral phantom (with spotlights of radius 7.5 mm). Figure 1 shows the 3D tibial
model and the spotlight locations.

3.2 Methods

A data set consisted of one point from each spotlight and one refinement point from
each square on the surface, yielding a total of sixteen points for the tibial phantbm a
twelve points for the vertebral phantom. One thousand sets were randomly éeledte
assessed by six different procedures. For all but Step 1, all data in tiversematched to
the entire isosurface:

Paired-point least-squares registration of initial data to spotlightrsente
Scored perturbation registration, starting from the registration of IStep
Robust Tukey-estimator registration, starting from the registrationeqf &
ICP least-squares registration, starting from the registration pfiSte
Robust Tukey-estimator registration, starting from the registratiotept &
6. Robust Tukey-estimator registration, starting from the registrationeqf &

aprwbdpE

The purpose of Steps 1, 2, and 3 are to provide an overall estimate of robusttegist
Step 4 is the traditional ICP registration, to which robust estimatebea@ompared (it also
acts as an initial estimate for a robust estimates). Step 5 is atfdbestimator started from
a naive initial estimate, and Step 6 is a robust M-estimator stidadan ICP estimate.

Traditionally the results of a registration with parameteese reported in terms of the
root-mean-square of the residual errors between theRlatad the nearest poinis C X
derived from the model pointX’. As we have shown in earlier work [4] this fails to
describe the errors arising from incorrect estimates of the rotationahptees, so we use
an axis-angle decomposition to analyse the results.

Suppose that the ideal transformatiofj$7). One can form theesidual transforma-
tion between a givef®'(7) and the ideal’;(7) as

D(r) = T(r)Tr(r)~

The matrix Rp of the transformatiorD(7) is a rotation about an axis by an angled.
This angle is the angular error of the givé&iir) and is important because the angular
error produces an increasingly large positional error of a transformed point as tiéspoi
increasingly far from the region from which the registration was derivedcdyparison
the translational error, which is the translational componenb@f), is constant for all
points.

To compare the results of surface registrations to the fiducial registr#tiersurface
registration was applied to the measured location of fiducial marker stear¢he spot-
light centroid. The distance between the transformed marker and the CT coerdlitiaé
fiducial location was then calculated. The ideal registration transfeymest unknown, so
T;(7) was taken to be a registration derived from the fiducial markers (whéck adjacent
to the spotlight regions).



3.3 Results

The experiments produced an ensemble of 1,000 registrations for analysis, which rep-
resent a sampling of how the spotlight registration to an anatomical region pgaghtrm
in practice. For each registration in this ensemble we calculatedntngaa error as the
rotational difference between the sample registration and the fiduciatregigin. His-
tograms of the registration results of each step were produced, and are shiéigare 2
and Figure 3.

4.  AnIn Vivo Pilot Clinical Study

Spotlight registration has been conducted on six patients in Kingston Generatafiospi
Each patient presented with osteoarthritis confined to the medial tibio&cwnpartment
and were deemed appropriate for high tibial osteotomy. Five of the six patiendgnstru-
mented with the type of fiducial markers used inithgitro study. In each case the process
of drilling 4mm Kirschner guide wires for a modified Coventry procedure was peddrm
with the spotlight registration. Registration was validated visually byamimtg bony sur-
faces both within and outside the spotlight regions, and by contacting the fiducianmmark
when they were present and unmoved by dissection.

The ultimate use of registration is in providing an appropriate treatmeitstsandard
outcome measure was used. Postoperative A/P radiographs were measuretrimeete
the radiographic angle between the tibial plateau and the tibial shaft. Froemntjies was
subtracted the intended correction angle. The resulting correction ereotabaated in
Table 1.

Table 1: Osteotomy correction errors arising from computer-enhanced surgery with spot
light registration.

Patient Number
Valgus correction 1 2 3 4 5 6
error (degrees) +1.5° —1.5° —1.5° —1.5° +0.5° —1.0°

5. Discussion

Thein vitro results for the tibial phantom demonstrate the utility of robust registration,
as well as the sensitivity of robust estimators to the initial estiniBte final M-estimates
of the registration had a median rotational error that was about 60% of the convéntiona
ICP estimate, which is significant. However, if the M-estimator st@sted from the ICP
registrations then the error was a little less than 80%, which is signifjodifferent from
our method and from the ICP method. Naive use of the M-estimator, startingmt dr
closed-form registration to the spotlight centroids, produced registrationsHahwhe
median rotational error was almost 10% larger than the simple ICP method.

Thein vitro results for the vertebral phantom confirm the utility of least-squares reg-
istration. Our initial sampling produced poorer results than would be expectedarom
surgeon’s careful use of paired-point matching. The ICP method produced very accurate
registrations, with a median rotational error of slightly more tbanOur robust method
was slightly worse: the median error was reduced, but the histograms showuezdrt
turbation step carried the registrations near local minima into which testivhator was
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Figure 2: Tibial rotational errors from 1000 sets of physical surface data, 16 points per
set. Rotational error was calculated as the maximum expected feasitdd¢ialeaf nearby
fiducial points.
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Figure 3: Vertebral rotational errors from 1000 sets of physical surface data, 12 points per
set. Rotational error was calculated as the maximum expected feasitdd¢ialeaf nearby
fiducial points.



“trapped”. Starting the M-estimator from ICP produced a stable result fartvthe median
error was about 10% less than that of ICP.

Thein vivo results measure the accuracy of the entire process of computer-enhanced
surgery: CT (including patient motion), isosurface extraction, decimation, cordpased
planning, registration, the physical processes of resection and reduction, and amggHar
surement from plain radiographs. The maximum erro2°in the pilot study compares
very favorably with the results by traditional methods.

The main contributions of this work are the development of an intraoperative data-
collection scheme that is easy to use, and the implementation of a pair ot stétistical
methods for estimating 3D surface registration. The methods have been tdstesively
in the laboratory and have been used in early clinical trials. The coder aufew seconds
on common UNIX workstations.

Robust statistical methods are important for registration because theg@mgound
mathematical basis for the attenuating the influence of outliers in the datantFaop-
erative use we suggest that they are superior to manual editing of the dataahbom
methods of outlier attenuation. However, the implementation of robust methodsaequi
care, especially in choosing a starting point. Robust methods, like nonlirrestrsiguares
methods, will converge to local minima. This was particularly evident irsthdy of the
vertebral phantom.

In summary, robust surface registration of surgical data to CT-ders@slifaces is
a potentially useful in computer-enhanced surgery. The local nature of the s#irch
leaves the method subject to “trapping”, and we recommend that such methods ctmtinue
undergo visual verification by the surgeon until validated global registratiohodstare
devised.

Acknowledgments

This research was supported in part by Communications and Information Technology
Ontario, the Institute for Robotics and Intelligent Systems, the Naturah&sseand Engi-
neering Research Council, and by an Alfred P. Sloan Research FelptedbdF. Marker
implantation and osteotomy procedures were performed in Kingston General didgpit
Dr. Paul Fenton, Dr. Mark Harrison, and Dr. John Rudan.



REFERENCES

[1] J. L. Bentley. “Multidimensional binary search treegdgor associative searching”.
Communications of the ACM, 18(9):509-517, September 1975.

[2] P. J. Besl and N. D. McKay. “A method for registration oti3hapes”.|EEE Transactions on
Pattern Analysis and Machine Intelligence, 14(2):239-256, February 1992.

[3] R. E. Ellis, S. Toksvig-Larsen, M. Marcacci, D. Cararagiind M. Fadda. “Use of a
biocompatible fiducial marker in evaluating the accuracgtamage registration”Investigative
Radiology, 31(10):658-667, October 1996.

[4] R. E. Ellis, D. J. Fleet, J. T. Bryant, J. Rudan, and P. 8entA method for evaluating ct-based
surgical registration”. In J. Troccaz, E. Grimson, and Rdges, editor<sVRMed-MRCAS 97,
pages 141-150. Springer-Verlag, March 1997.

[5] W. E. L. Grimson, G. J. Ettinger, S. J. White, P. L. GleasbrLozano-Pérez, W. M. W. Ill, and
R. Kikinis. “Evaluating and validating an automated regisbn system for enhanced reality
visiualization in surgery”. In N. Ayache, editad@omputer Vision, Virtual Reality and Roboticsin
Medicine, pages 3—-12. Springer-Verlag, April 1995.

[6] R. M. Haralick, H. Joo, C. Lee, X. Zhuang, V. G. Vaidya, avdB. Kim. “Pose estimation
from corresponding point data”. In H. Freeman, edikdachine Vision for Inspection and
Measurement. Academic Press, Inc., 1989, pages 1-84.

[7] C. J. Henri, A. C. F. Colchester, J. Zhao, D. J. Hawkes, DGLHill, and R. L. Evans.
“Registration of 3-d surface data for intra-operative gumice and visualization in frameless
stereotactic neurosurgery”. In N. Ayache, edit@omputer Vision, Virtual Reality and Roboticsin
Medicine. Springer-Verlag, April 1995.

[8] D. C. Hoaglin, F. Mosteller, and J. W. Tukey, editotdnderstanding Robust and Exploratory
Data Analysis. John Wiley & Sons, 1983.

[9] B. K. P. Horn. “Closed-form solution of absolute orietité using unit quaternions”Journal
of the Optical Society of America A, 4(4):629-642, April 1987.

[10] P. J. Huber.Robust Satistics. John Wiley & Sons, 1981.

[11] R. Kumar and A. R. Hanson. “Analysis of different robuséthods for pose refinement”. In
International Workshop on Robust Computer Vision, 1990.

[12] T. Masuda and N. Yokoya. “A robust method for registvatand segmentation of multiple
range images”Computer Vision and Image Understanding, 61(3):295-307, May 1995.

[13] C. R. Maurer, J. M. Fitzpatrick, R. J. Maciunas, and GAlen. “Registration of 3-d images
using weighted geometrical featuredEEE Transactions on Medical Imaging, 15(6):836—849,
December 1996.

[14] M. J. Mirza and K. L. Boyer. “Performance evaluation aflass of m-estimators for surface
parameter estimation in noisy range datHEEE Transactions on Robotics and Automation,
9(1):75-85, February 1993.

[15] P. J. Rousseeuw and A. M. Leroobust Regression and Outlier Detection. John Wiley &
Sons, 1987.

10



